Note

COMPUTER ANALYSIS OF NON-ISOTHERMAL TG DATA FOR MECHANISM AND ACTIVATION ENERGY. PART III

LEO REICH and S.S. STIVALA

Department of Chemistry and Chemical Engineering, Stevens Institute of Technoiogv. Hohoken, NJ 07030 (U.S.A.)

(Received 16 December 1983)

In Part I of this series [1], a so-called $p(x)$ function was employed as part of a computer program (CP) to distinguish one of ten theoretically possible solid-state decomposition mechanisms and to determine the corresponding activation energy (E) , using non-isothermal (NI) TG data. Further, a truncated Schlömilch expansion [2] was used to estimate values of $p(x)$. Excellent agreement was obtained between calculated and reported results. In this paper, the previously reported CP [l] will be modified and generalized so that various expressions previously reported [3,4] can also be utilized to afford satisfactory results for *E* and mechanism.

THEORY

In general, for NI TG data

 $d\alpha/dT = [A/(RH)] \exp(-X) f(\alpha)$ (1)

where $X = E/RT$; α = fractional conversion; A = pre-exponential factor; $RH =$ constant heating rate; *T* = temperature (K); $R =$ gas constant; and $f(\alpha)$ = some function of α which is dependent on mechanism. By using eqn. (1) in conjunction with various expressions previously reported, i.e., eqns. (2) and (6) of ref. 3 (E3) and eqns. (1), (2), (5)–(7) of ref. 4 (E4), it can be readily shown that, in general,

$$
\log[g(\alpha)j(X)/f(X)] + X = \log[AE/(RH)R] = \text{constant}
$$
 (2)

where, $g(\alpha) = \int_0^{\alpha} d\alpha / f(\alpha)$; $j(X) = aX^2 + bX$; and $f(X) =$ last terms in parentheses in E3 and E4 which involve functions of X , e.g., for eqn. (5), $f(X) = 1 - 2/X + 6/X^2$ (a truncated integration by parts expansion). For E3 and eqns. (1), (2) and (6) of Ref. 4, $a = 0$, $b = 1$ in $j(X)$; for eqn. (5), $a = 1, b = 0$; for eqn. (7), $a = 1, b = 1$.

In order to apply eqn. (2) to the CP previously described and listed [l], the following modifications in the CP should be made. In line 30, change the *F*-value to 1.000; in line 35, use DEF FN $P(X)$ to define the function $f(X)$; and, in line 80, use $B(K) = FN$ W[W(K)] + X + log[i(X)] - log[FN P(X)].

RESULTS AND DISCUSSION

Equation (2) was tested using NI TG data previously reported [l]. Thus, by using $f(X) = 1 - 2/X + 6/X^2$, $j(X) = X^2$ (cf. eqn. 5 of ref. 4), and the modified CP, results obtained for E (kcal mol⁻¹), and mechanism, and whether the computer analysis was complete $(Y \text{ or } N)$ are listed in order followed by the data line number [l] and the type of data used, respectively: 29, Fl, Y, 185, Zsako complex I; 26, R3, Y, 195, Zsako complex II; 22, R3, Y, 205, sodium bicarbonate; 30, D2, Y, 215, Heide's theoretical data; 28, R2, N, 230, Reich's theoretical data; 30, D3, Y, 240, Reich's theoretical data. The preceding results agree exactly with those previously reported [l].

A typical printout (for the sake of brevity, the initial E -value used was 28 kcal mol⁻¹) of results obtained using NI TG data from line 240 and eqn. (5) of ref. 4 is given in the Appendix. Equation (2) of ref. 4 was also tested using NI TG data from line 240. Results obtained for *E* and mechanism were in excellent agreement with anticipated results. From the preceding, it may be safely assumed that the similar application of various other expressions in refs. 3 and 4 will also afford excellent results. Further, whereas the E -range used in Part I of this series $[1]$ was limited to 20–30 kcal mol⁻¹, this range can now be extended (cf. ref. 4).

REFERENCES

- 1 L. Reich and S.S. Stivala, Thermochim. Acta, 73 (1984) 165.
- 2 J.H. Flynn and L.A. Wall, J. Res. Natl. Bur. Stand., Sect. A, 70(6) (1966) 487.
- 3 L. Reich and S.S. Stivala, Thermochim. Acta, 52 (1982) 337.
- 4 L. Reich and S.S. Stivala, Thermochim. Acta, 53 (1982) 121.

APPENDIX

Results obtained for *E* and mechanism using reported TG data [l] and a computer program which uses the generalized eqn. (2).

FOR A4: (-LN(1-A)) (1/4), DELTA= 1.6356 FOR A3: (-LN(1-A)) (1/3), DELTA= 1.5415 FOR A2: $(-LM(1-A)) \cap (1/2)$, DELTA= 1.3532 FOR R2: 1-(1-A)^(1/2), DELTA= .9551 FOR R3: 1-(1-A) (1/3), DELTA= . 9029 FOR F1: - LN(1-A), DELTA= .7899 FOR D1: A^2, DELTA= .308 FOR D2: A+(1-A)LN(1-A), DELTA= .147
FOR D2: A+(1-A)LN(1-A), DELTA= .147
FOR D3: (1-(1-A)\(1/3))^2, DELTA= .1124 PROB.MECHNSM. = D4: 1-(2A/3)-(1-A) ~(2/3) FOR EA= 28 K/M FOR A4: (-LN(1-A))^(1/4), DELTA= 1.6952
FOR A3: (-LN(1-A))^(1/3), DELTA= 1.6041 FOR A2: (-LN(1-A)) ^ (1/2), DELTA= 1.4158 FOR R2: 1-(1-A)^(1/2), DELTA= 1.0177
FOR R3: 1-(1-A)^(1/2), DELTA= 1.0177
FOR R3: 1-(1-A)^(1/3), DELTA= .9655
FOR F1: 'LN(1-A), DELTA= .8523 FOR D1: A'2, DELTA= .3623, FOR D2: A+(1-A)LN(1-A), DELTA= .1914 FOR D4: 1-(2A/3)-(1-A)²(2/3), DELTA= .116 FOR D3: (1-(1-A) (1/3)) "2, DELTA= .0498 PROB.MECHNSM.= D3: (1-(1-A)^(1/3))^2 FOR EA= 29 K/M $\begin{tabular}{ll} FOR A4: & (-LM(1-A)) \cap (1/A), & DELTA = 1.7609 \\ FOR A3: & (-LM(1-A)) \cap (1/A), & DELTA = 1.6666 \\ \end{tabular}$ FOR A2: (-LN(1-A)) ^(1/2), DELTA= 1.4784 FOR R2: $1-(1-A)^\wedge(1/2)$, DELTA= 1.0803 FOR RS: 1-(1-A)^(1/3), DELTA= 1.0281
FOR F1: -LN(1-A), DELTA= .9148 FOR D1: A^2, DELTA= .4188 FOR D2: A+(1-A)LN(1-A), DELTA= .2463
FOR D4: 1-(2A/3)-(1-A)^(2/3), DELTA= .1698 FOR D3: (1-(1-A) (1/3)) (2, DELTA- .0128 PROB.MECHNSM.= D3: (1-(1-A)^(1/3))^2 FOR EA= 30 F/M FOR A4: (-LN(1-A))^(1/4), DELTA= 1.8234
FOR A3: (-LN(1-A))^(1/3), DELTA= 1.7292
FOR A2: (-LN(1-A))^(1/2), DELTA= 1.541 FOR R2: 1-(1-A)²(1/2), DELTA= 1.1428
FOR R3: 1-(1-A)²(1/3), DELTA= 1.1428 FOR Fi: $-LN(1-A)$, DELTA= .9772 FOR D1: A^2, DELTA= .4769 FOR D2: A+(1-A)LN(1-A), DELTA= .3041
FOR D2: A+(1-A)LN(1-A), DELTA= .3041
FOR D3: (1-(1-A)^(1/3))^2, DELTA= .0754 PROB.MECHNSM.= D3: (1-(1-0) (1/3)) 2 FOR EA= 01 K/M EA= 30 KCAL/MOL FOR MECHNSM. D3: (1-(1-4) (1/3) ** 2, DELTA= .0127929869 ŋ.